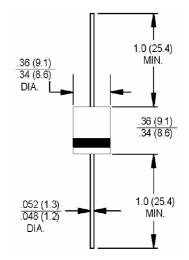


5KP24A

Transient Voltage Suppressor Diodes


ROHS

P600

Features

- UL Recognized File # E-96005
- ♦ Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated junction
- 5000W peak pulse power capability with a 10/1000us waveform, repetition rate (duty cycle), 0.05%
- Excellent clamping capability
- Low incremental surge resistance
- Fast response time: Typically less than 1.0ps from 0 Volts to $V_{(BR)}$
- Devices with $V_{(BR)}$ >10v I_D are typically I_D less than 1.0µA High temperature soldering guaranteed: 265°C / 10 seconds / .375",(9.5mm) lead length / 5lbs.,(2.3kg) tension

Mechanical Data

- Case: Molded plastic body over glass passivated junction
- Terminals: Solder plated axial leads, solderable per MIL-STD-750, Method 2026
- ♦ Polarity: The color band denotes the cathode, which is positive with respect to the anode under normal TVS operation
- Mounting Position: Any Weight: 0.07 ounce, 2.85 grams

Dimensions in inches and (millimeters)

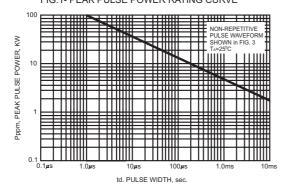
Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

Type Number	Symbol	Value	Units	
Peak Power Dissipation at T _A =25°C, Tp=1ms (Note 1)	P_PPM	Minimum5000	0 Watts	
Steady State Power Dissipation at T _L =75 °C Lead Lengths .375", 9.5mm (Note 2)	P_D	8.0	Watts	
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method) (Note 3)	I _{FSM}	400	Amps	
Maximum Instantaneous Forward Voltage at 100A for Unidirectional Only (Note 3)	V _F	3.5	Volts	
Operating and Storage Temperature Range	T_J, T_{STG}	-55 to + 175	°C	


Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above T_A=25^oC Per Fig. 2.

- 2. Mounted on Copper Pad Area of 0.8 x 0.8" (20 x 20 mm) Per Fig. 4.
- 3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes Maximum.

RATINGS AND CHARACTERISTIC CURVES (5KP24A)

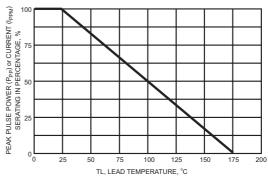


FIG.3- PULSE WAVEFORM

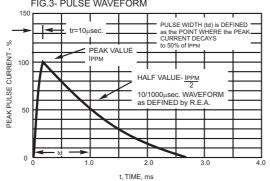


FIG.4- MAXIMUM NON-REPETITIVE FORWARD

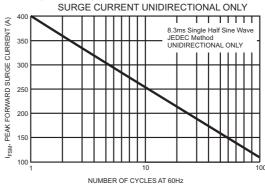


FIG.5- TYPICAL JUNCTION CAPACITANCE

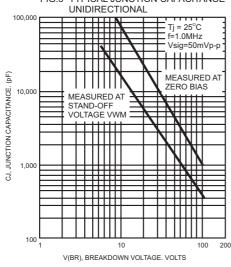
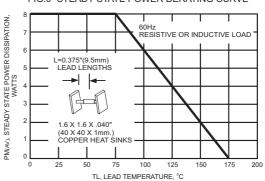



FIG.6- STEADY STATE POWER DERATING CURVE

ELECTRICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

	Breakdown Voltage		Test	Stand-Off	Maximum	Maximum	Maximum	Maximum
Device			Current	Voltage	Reverse Leakage	Peak Pulse	Clamping	Temperature
	(Volts) (Note 1)		@IT	Vwm	at Vwm	Current IRSM	Voltage at IPPM	Coefficient
	Min	Max	(mA)	(Volts)	ID (uA)	(Note 2)(Amps)	Vc(Volts)	of VBR(% / °C)
5KP24A	26.7	29.5	5.0	24	10	129	38.9	0.101

- 1. VBR measured after IT applied for 300us, IT=square wave pulse or equivalent.
- 2. Surge current waverform per Figure 3 and derate per Figure 2.
- 3. All terms and symbols are consistent with ANSI/IEEE C62.35.